Stein Point Markov Chain Monte Carlo

Wilson Chen
Institute of Statistical Mathematics, Japan

June 15, 2019 @ ICML Stein’s Method Workshop, Long Beach



Collaborators

Alessandro Barp  Francois-Xavier Briol  Jackson Gorham




Empirical Approximation Problem

A major problem in machine learning and modern statistics is to approximate some
difficult-to-compute density p defined on some domain X C R% where normalisation
constant is unknown. l.e., p(z) = p(x)/Z and Z > 0 is unknown.
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A popular approach is Markov chain Monte Carlo.



Discrepancy

Idea — construct a measure of discrepancy
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with desirable features:

* Detect (non)convergence. l.e., D(p,,p) — 0 only if p, = p.

¢ Efficiently computable with limited access to p.
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Idea — construct a measure of discrepancy

D(pn,p)

with desirable features:

* Detect (non)convergence. l.e., D(p,,p) — 0 only if p, = p.

¢ Efficiently computable with limited access to p.

Unfortunately not the case for many popular discrepancy measures:

o Kullback-Leibler divergence,
® \Wasserstein distance,

® Maximum mean discrepancy (MMD).
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Kernel embedding of a distribution p
pp() = /k(m, Jp(x)dx (a function in the RKHS K)
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We are faced with intractable integrals w.r.t. p!

For a Stein kernel kg:
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Kernel Stein Discrepancy (KSD)
The kernel Stein discrepancy (KSD) is given by
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where kg is the Stein kernel
ko(x, ") == T, T k(z, x')
= Vi Vuk(z,2") + (Vi logp(x), Virk(z,2'))
+ (Varlogp(2), Viok(z, 27))
+ (Vi log p(x), Vo log p(a)) k(, 2'),

with T,f = V(pf)/p. (T, is a Stein operator.)
® This is computable without the normalisation constant.

® Requires gradient information V log p(x;).
® Detects (non)convergence for an appropriately chosen k (e.g., the IMQ kernel).
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Stein Points (SP)

The main idea of Stein Points is the greedy minimisation of KSD:
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A global optimisation step is needed for each iteration.



Stein Point Markov Chain Monte Carlo (SP-MCMC()

We propose to replace the global minimisation at each iteration j of the SP method
with a local search based on a p-invariant Markov chain of length m;. The proposed
SP-MCMC method proceeds as follows:

1. Fix an initial point z; € X.

2. Forj=2,...,n:
a. Select i* € {1, ..., j — 1} according to criterion crit({z;}_}).
b. Generate (y;,);-, from a p-invariant Markov chain with y; 1 = z;-.
c. Set x; < arg minze{yj’i};r;jl Dkoyp({xi}g;ll U{z}).
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We propose to replace the global minimisation at each iteration j of the SP method
with a local search based on a p-invariant Markov chain of length m;. The proposed
SP-MCMC method proceeds as follows:

1. Fix an initial point z; € X.
2. Forj=2,...,n:

a. Select i* € {1, ..., j — 1} according to criterion crit({xi}{;ll).

b. Generate (y;,);-, from a p-invariant Markov chain with y; 1 = z;-.
. j—1

c. Set x; < arg i, e Dy, p({zi}l 2] U{z}).

For crit, three different approaches are considered:
® LAST selects the point last added: ¢* := j — 1.
® RAND selects ¢* uniformly at random in {1, ..., 7 — 1}.

® INFL selects i* to be the index of the most influential point in {xl}f;l

We call =7 the most influential point if removing it from the point set creates the
greatest increase in KSD.



Gaussian Mixture Model Experiment
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IGARCH Experiment (d = 2)
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SP-MCMC methods are compared against the original SP (Chen et al., 2018), MED (Roshan
Joseph et al., 2015) and SVGD (Liu & Wang, 2016), as well as the Metropolis-adjusted
Langevin algorithm (MALA) and random-walk Metropolis (RWM).



ODE Experiment (d = 4)
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SP-MCMC methods are compared against the original SP (Chen et al., 2018), MED (Roshan
Joseph et al., 2015) and SVGD (Liu & Wang, 2016), as well as the Metropolis-adjusted
Langevin algorithm (MALA) and random-walk Metropolis (RWM).



ODE Experiment (d = 10)
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SP-MCMC methods are compared against the original SP (Chen et al., 2018), MED (Roshan
Joseph et al., 2015) and SVGD (Liu & Wang, 2016), as well as the Metropolis-adjusted
Langevin algorithm (MALA) and random-walk Metropolis (RWM).



Theoretical Guarantees

The convergence of the proposed SP-MCMC method is established, with an explicit
bound provided on the KSD in terms of the V-uniform ergodicity of the Markov
transition kernel.

Example: SP-MALA Convergence

Let (m;)}_; C N be a fixed sequence and let {z;}}"; denote the SP-MALA

output, based on Markov chains (Yjvl);ljl,j € N. (Under certain regularity con-
ditions) MALA is V-uniformly ergodic for V(z) = 1 + ||z||, and 3C > 0 such
that




Paper, Code and Poster

® Paper is available at:
https://arxiv.org/pdf/1905.03673.pdf

® Code is available at:
https://github.com/wilson-ye-chen/sp-mcmc

® Check out the poster at Lunch and Poster Session!



