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Introduction

Introduction

We are in an era of abundant data:

Text, images, videos from the Internet; raw medical notes from doctors, etc.

We need tools for modeling, searching, visualizing, and understanding large-scale
data sets.

We want our modeling tools:

Faithfully represent uncertainty in our model structure and parameters.

Automatically deal with noise in our data.

Exhibit robustness.

Modeling from a Bayesian perspective!
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Introduction

Demo: Markov-Chain-based Bayesian Sampling

Nine mixtures of Gaussians1.

Sequential of samples connected by yellow lines.

1Demo by T. Broderick and D. Duvenaud.
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Introduction

Introduction

Particle-based Variational Inference Methods (ParVIs):

Represent the variational distribution q by particles; update the particles to
minimize KLp(q).

More flexible than classical VIs; more particle-efficient than MCMC.

A few natural questions:

How do ParVIs work (unifying and understanding)?

Can we accelerate ParVIs?

Related Work:

Stein Variational Gradient Descent (SVGD) [12] simulates the gradient flow
(steepest descending curves) of KLp on PH(X ) [11].

Stochastic Gradient Langevin Dynamics (SGLD) [2] simulate the gradient
flow of KLp on the Wasserstein space P2(X ).
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Background

Stochastic Gradient Langevin Dynamic

Given data D = {b1, · · · , bN}, model prior p(x), model (likelihood)

p(D|x) =
∏N
i=1 p(bi|x) on i.i.d. assumption.

Want to sample from the posterior distribution:

p(x|D) ∝ p(x)p(D|x) = p(x)

N∏

i=1

p(bi|x) .

SGLD are numerical solutions of continuous-time diffusion processes with
stationary distribution equal to p(x|D):

dxt = F (xt)dt+ dWt .

Define the potential energy (negative unnormalized posterior):

U(x) , −
N∑

i=1

log p(bi|x)− log p(x)−����XXXXlog p(D)
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Background

Stochastic Gradient Langevin Dynamic

In case of large data, define a stochastic version of U(x) with a minibatch of
size n:

Ũ(x) , −N
n

n∑

i=1

log p(bi|x)− log p(x)

Stochastic gradient Langevin dynamic (SGLD) generates samples via

x`+1 = x` + h`+1∇xŨ(θ`) +
√

2h`+1ζ`+1, ζ`+1 ∼ N (0, I)
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Background

Stein Variational Gradient Descent

SVGD iteratively updates an interactive particle system {x(i)` }Mi=1 via:

x
(i)
`+1 = x

(i)
` + hφ(x

(i)
` ), φ = arg max

φ∈F
{ ∂
∂h

KL(q[hφ]||p(x|D))}

q[hφ]: density formed by the particles.

When F is an RKHS induced by kernel K(x, x′), SVGD endows close-form
updates:

x
(i)
`+1 = x

(i)
` +

h

M

M∑
j=1

K(x
(j)
` , x

(i)
` )∇

x
(j)
`

Ũ(x
(j)
` )︸ ︷︷ ︸

move to high prob. region

+∇
x
(j)
`

K(x
(j)
` , x

(i)
` )︸ ︷︷ ︸

repulsive force



Stein Variational Gradient Descent

Directly minimize KL({xi} || p).

Idea: Iteratively move {xi}n
i=1 towards the target p by updates of form

x 0
i  xi + ✏�(xi ),

where � is a perturbation direction chosen
to maximumly decrease the KL divergence
with p, that is,

� = arg max
�2F

⇢
� @

@✏
KL(q[✏�] || p)

��
✏=0

�
,

where q[✏�] is the density of x 0 = x +✏�(x)
when the density of x is q.

Liu et al. (Dartmouth) December 24, 2016 21 / 43

Image credit: Qiang Liu.
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Unifying Particle-Based Variational Inference

Wasserstein Gradient Flows

P2(X ) :=
{
q: distribution on X

∣∣ ∃x0 ∈ X s.t. Eq[d(x0, x)2] < +∞
}

WGFs are partial differential equations (PDEs) to describe evolutions of
probability distributions over time.

It has the following general form:

∂tqt = ∇ ·
(
qt∇(

δF

δqt
(qt))

)
,

F : P(Ω)→ R defines the landscape in the space of probability measures,
called energy functional.

Consider F = KLp(q), vGF := −∇ δKLp(qt)

δqt
= ∇ log p−∇ log q.

Typically the stationary distribution q∞ is our target distribution.
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Unifying Particle-Based Variational Inference

Wasserstein Gradient Flows

P2(X ) :=
{
q: distribution on X

∣∣ ∃x0 ∈ X s.t. Eq[d(x0, x)2] < +∞
}

WGFs are partial differential equations (PDEs) to describe evolutions of
probability distributions over time.

It has the following general form:

∂tqt = ∇ ·
(
qt∇(

δF

δqt
(qt))

)
,

F : P(Ω)→ R defines the landscape in the space of probability measures,
called energy functional.

Consider F = KLp(q), vGF := −∇ δKLp(qt)

δqt
= ∇ log p−∇ log q.

Typically the stationary distribution q∞ is our target distribution.

How to solve it?

1 Discrete gradient flows.

2 Blob methods.
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Unifying Particle-Based Variational Inference

Discrete Gradient Flows

Discretize the continuous-time PDE, i.e., approximating qt by q
(h)
k obtained

from an optimization problem, where h is the stepsize, and t = kh.

exact gradient flow

discrete gradient flows

Each intermediate solution is obtained via Minimizing Movement Scheme:

q
(h)
k+1 = arg min

q
F (q) + d2W (q, q

(h)
k )/2h
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Unifying Particle-Based Variational Inference

Explanation of Discrete Gradient Flows

q
(h)
k+1 = arg min

q
F (q) + d2W (q, q

(h)
k )/2h (1)
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Unifying Particle-Based Variational Inference

Explanation of Discrete Gradient Flows

q
(h)
k+1 = arg min

q
F (q) + d2W (q, q

(h)
k )/2h (1)

Consider the Euclidean case, where q
(h)
k is replaced with a finite-dimension

vector x
(h)
k ,

d2W corresponds to the Euclidean distance in Euclidean space.

Iterative optimization in Eq. (1) becomes

x
(h)
k+1 = arg min

x
F (x) +

∥∥∥x− x(h)k

∥∥∥
2

/2h

⇒x(h)k+1 = x
(h)
k − h∇xF (x)

Gradient descent!
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Unifying Particle-Based Variational Inference

Explanation of Discrete Gradient Flows

q
(h)
k+1 = arg min

q
F (q) + d2W (q, q

(h)
k )/2h (1)

Consider the Euclidean case, where q
(h)
k is replaced with a finite-dimension

vector x
(h)
k ,

d2W corresponds to the Euclidean distance in Euclidean space.

Iterative optimization in Eq. (1) becomes

x
(h)
k+1 = arg min

x
F (x) +

∥∥∥x− x(h)k

∥∥∥
2

/2h

⇒x(h)k+1 = x
(h)
k − h∇xF (x)

Gradient descent!

Discrete gradient flows are gradient descent in the space of probability measures!
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Unifying Particle-Based Variational Inference

Numerical Solution for Discrete Gradient Flows

q
(h)
k+1 = arg min

q
F (q) + d2W (q, q

(h)
k )/2h︸ ︷︷ ︸

E

Still infeasible to solve since q
(h)
k are infinite-dimensional.
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Unifying Particle-Based Variational Inference

Numerical Solution for Discrete Gradient Flows

q
(h)
k+1 = arg min

q
F (q) + d2W (q, q

(h)
k )/2h︸ ︷︷ ︸

E

Still infeasible to solve since q
(h)
k are infinite-dimensional.

Particle approximation

Approximate q
(h)
k as q

(h)
k ≈ 1

M

∑M
i=1 δx(i)

k

.

Solving q
(h)
k is equivalent to solving x

(i)
k ’s.

Update x
(i)
k by gradient descent:

x
(i)
k+1 = x

(i)
k − h

∂E

∂x

∣∣∣x(i)
k
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Unifying Particle-Based Variational Inference

Blob Methods

∂tqt = ∇ · (qt∇(
δF

δqt
(qt))

︸ ︷︷ ︸
−vGF

) (2)

Directly solve the original WGF with particle approximation:

Theorem 1

When approximating qt with particles, Eq. (2) is reduced to solving

dx
(i)
t = −vBlob({x(j)t }j)dt (3)

Directly use numerical method to solve Eq. (3):

x
(i)
k+1 = x

(i)
k − hvBlob({x(j)k }j)

∣∣∣x(i)
k
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Unifying Particle-Based Variational Inference

SVGD as Wasserstein Gradient Flow

Following some manifold argument [10], vGF can be reformulated as:

vGF = max · argmax
v∈L2

q,‖v‖L2q
=1

〈
vGF, v

〉
L2
q
. (4)

We find:

Theorem 2 (vSVGD approximates vGF)

vSVGD = max · argmax
v∈HD,‖v‖HD=1

〈
vGF, v

〉
L2
q
.

HD is a subspace of L2
q, so vSVGD is the projection of vGF on HD.

The PH(X )-gradient-flow interpretation of SVGD: PH(X ) is not a very nice
manifold.
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Unifying Particle-Based Variational Inference

Recap of the Unifying ParVIs

P2(X ) :=
{
q: distribution on X

∣∣ ∃x0 ∈ X s.t. Eq[d(x0, x)2] < +∞
}
.

Gradient flow on P2(X ) for energy functional KLp(q) := Eq[log(q/p)]:

Approximation of vector-field vGF
([17], Thm 23.18; [1], Example 11.1.2):

vGF := − grad KLp(q) = −∇
( δ
δq

KLp(q)
)

= ∇ log p−∇ log q.

Minimizing Movement Scheme (MMS) ([1], Def. 2.0.6):

qt+ε = argmin
q∈P2(X )

KLp(q) +
1

2ε
d2W (q, qt).

The Langevin dynamics dx = ∇ log p(x) dt+
√

2 dBt(x) (Bt is the Brownian
motion) is also the gradient flow of KLp on P2(X ) [7].�



�
	ParVIs are numerical solutions to Wasserstein

gradient flows.
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Unifying Particle-Based Variational Inference

Particle-Based Variational Inference Methods (ParVIs)

Stein Variational Gradient Descent (SVGD) [12]:

vSVGD(·) := max · argmax
v∈HD,‖v‖HD=1

− d

dε
KLp

(
(id +εv)#q

)∣∣∣
ε=0

= Eq(x)[K(x, ·)∇ log p(x) +∇xK(x, ·)],
where H is the reproducing kernel Hilbert space (RKHS) of kernel K.

vSVGD is the vector field of the gradient flow of KLp on a kernel-related
distribution manifold PH [11].

Blob method (w-SGLD-B) [2]:

vBlob := −∇
( δ
δq

Eq[log(q̃/p)]
)

= ∇ log p−∇ log q̃ −∇
(
(q/q̃) ∗K

)
, q̃ := q ∗K.

GFSD method [10]:

vGFSD := ∇ log p−∇ log q̃, q̃ := q ∗K.
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Unifying Particle-Based Variational Inference

Particle-Based Variational Inference Methods (ParVIs)

Stein Variational Gradient Descent (SVGD) [12]:

vSVGD(·) := max · argmax
v∈HD,‖v‖HD=1

− d

dε
KLp

(
(id +εv)#q

)∣∣∣
ε=0

= Eq(x)[K(x, ·)∇ log p(x) +∇xK(x, ·)],
where H is the reproducing kernel Hilbert space (RKHS) of kernel K.

vSVGD is the vector field of the gradient flow of KLp on a kernel-related
distribution manifold PH [11].

GFSF method [10]:

vGFSF := ∇ log p+ argmin
u∈L2

max
φ∈HD,
‖φ‖HD=1

(
Eq[φ · u−∇ · φ]

)2
.

Solution: v̂GFSF = ĝ + K̂ ′K̂−1. (Note v̂SVGD = v̂GFSFK̂.)
ĝ:,i = ∇x(i) log p(x(i)), K̂ij = K(x(i), x(j)), K̂′:,i =

∑
j ∇x(j)K(x(j), x(i)).
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Understanding Particle-Based Variational Inference

ParVIs Approximate P2(X ) Gradient Flow by Smoothing

Smoothing Functions

SVGD restricts the optimization domain L2
q to HD.

Theorem 3 (HD smooths L2
q)

For X = RD, a Gaussian kernel K on X and an absolutely continuous q, the
vector-valued RKHS HD of K is isometrically isomorphic to the closure

G := {φ ∗K : φ ∈ C∞c }
L2
q .

C∞c
L2
q = L2

q ([9], Thm. 2.11) =⇒ G is roughly the kernel-smoothed L2
q.

GFSF smoothed functions in a similar way as SVGD:

vGFSF := ∇ log p+ argmin
u∈L2

max
φ∈HD,
‖φ‖HD=1

(
Eq[φ · u−∇ · φ]

)2
.
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Understanding Particle-Based Variational Inference

ParVIs Approximate P2(X ) Gradient Flow by Smoothing

Smoothing the Density

Blob [2] partially smooths the density.

vGF = −∇
( δ
δq

Eq[log(q/p)]
)

=⇒ vBlob = −∇
( δ
δq

Eq[log(q̃/p)]
)
.

GFSD [10] fully smooths the density.

vGF := ∇ log p−∇ log q =⇒ vGFSD := ∇ log p−∇ log q̃.

DGF [21] adds an entropy regularizer in the primal objective function,
encourage smoothing the density q.

Remark 4
Existing ParVI methods approximate Wasserstein Gradient flow by smoothing the
density or functions.
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Understanding Particle-Based Variational Inference

ParVIs Approximate P2(X ) Gradient Flow by Smoothing

Equivalence:
Smoothing-function objective = Eq[L(v)], L : L2

q → L2
q linear.

=⇒ Eq̃[L(v)] = Eq∗K [L(v)] = Eq[L(v) ∗K] = Eq[L(v ∗K)].

Necessity: grad KLp(q) undefined at q = q̂ := 1
N

∑N
i=1 δx(i) .

Theorem 5 (Necessity of smoothing for SVGD)

For q = q̂ and v ∈ L2
p, problem (4):

max
v∈L2

p,‖v‖L2p
=1

〈
vGF, v

〉
L2
q̂
,

has no optimal solution. In fact the supremum of the objective is infinite,
indicating that a maximizing sequence of v tends to be ill-posed.

�



�
	ParVIs rely on the smoothing assumption!

No free lunch!
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Understanding Particle-Based Variational Inference

Non-Asymptotic Convergence Theory [20]

SVGD evolves following the ODE:

dx
(i)
t =

1

M

M∑

j=1

[
K(x

(j)
t , x

(i)
t ) log p(x

(i)
t ) +∇

x
(j)
t
K(x

(j)
t , x

(i)
t )
]

dt, for ∀i

Would the above ODE system converge? ⇒ not really!

Theorem 6 (Pitfall of SVGD)

Define the expected particle distance (EPD) as: EPD ,
√∑M

i,j E‖x
(i)
t − x(j)t ‖2.

Under some assumptions, the EPD of SVGD is bounded as: EPD ≤ C0e
−2λt,

where C0 =
√∑M

i,j ‖x
(i)
0 − x

(j)
0 ‖2 and some positive constant λ.

�



�
	Without considering numerical errors, the theorem implies particles in

SVGD would collapse under some circumstance!
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Understanding Particle-Based Variational Inference

Non-Asymptotic Convergence Theory

We propose a remedy variant by combining SGLD:

dx
(i)
t =


 1

β
log p(x

(i)
t ) +

1

M

M∑

j=1

K(x
(i)
t − x(j)t ) log p(x

(j)
t )

+
1

M

M∑

j=1

∇K(x
(i)
t − x(j)t )


 dt+

√
2β−1dW(i)

t

Called stochastic particle optimization sampling (SPOS).

Theorem 7

Under certain assumptions, the EPD of SPOS is bounded as:

EPD ≤ C1e
−2λt + 4

√
d
β
M
λ , for some positive constants C1 and λ.

The EPD of SPOS would not collapse to zero.
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Understanding Particle-Based Variational Inference

Non-asymptotic Convergence Bounds of SPOS

Let qT be the probability law of the particles at iteration T , we measure by
W1(qT , p)

Theorem 8 (Fixed Stepsize (Informal))

Under certain assumptions, with a fixed stepsize h, W1(qT , p) is bounded:

W1(qT , p) = O

(
1√
M

+ exp {−Th}+Md
3
2T

1
2h

1
2

)
.

Theorem 9 (Decreasing Stepsize (Informal))

Denote h̃T ,
∑T−1
k=0 hk. Under certain assumptions, if we set hk = h0/(k + 1)

and Bk = B0 + [log(k + 1)]100/99, W1(qT , p) is bounded

W1(qT , p) = O

(
1√
M

+ exp{−h̃T }+Md
3
2h0

)
.�



�
	Larger particle number does NOT necessarily lead to smaller errors,

due to limited computational budget and numerical errors!
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Accelerating Particle-Based Variational Inference

Bandwidth Selection via the Heat Equation

Note

Under the dynamics dx = −∇ log qt(x) dt, qt evolves following the heat equation
(HE): ∂tqt(x) = ∆qt(x).

Smoothing the density: qt(x) ≈ q̃(x) = q̃(x; {x(i)}Ni=1). Then for qt+ε(x),

Due to HE, qt+ε(x) ≈ q̃(x) + ε∆q̃(x).

Due to the effect of the dynamics, updated particles {x(i)−ε∇ log q̃(x(i))}Ni=1

approximate qt+ε, so qt+ε(x) ≈ q̃(x; {x(i)−ε∇ log q̃(x(i))}Ni=1).

Objective:
∑
k

(
q̃(x(k)) + ε∆q̃(x(k))− q̃(x(k); {x(i)−ε∇ log q̃(x(i))}Ni=1)

)2
. Take

ε→ 0, make the objective dimensionless (h/x2 is dimensionless):

1
hD+2

∑
k

[
∆q̃(x(k); {x(i)}i) +

∑
j∇x(j) q̃(x(k); {x(i)}i) · ∇log q̃(x(j); {x(i)}i)

]2
.

Also applicable to other smoothing functions.
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Accelerating Particle-Based Variational Inference

Toy Experiments: Bandwidth Selection

Median:

HE:

SVGD Blob GFSD GFSF

Figure: Comparison of HE (bottom row) with the median method (top row) for
bandwidth selection.
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Accelerating Particle-Based Variational Inference

The Wasserstein Space P2(X ) and Riemannian manifold

P2(X ) :=
{
q: distribution on X

∣∣ ∃x0 ∈ X s.t. Eq[d(x0, x)2] < +∞
}
.

P2 as a Riemannian manifold [16, 17, 1] (X = RD):

Tangent vector ∂tqt on P2(X ) ⇐⇒ Vector field vt on X .
{x(i)}Ni=1 ∼ qt =⇒ {x(i) + εvt(x

(i))}Ni=1 ∼ (id +εvt)#qt = qt+ε + o(ε).
([1], Prop 8.1.8)

Recap: ParVIs are numerical solution of the Wasserstein Gradient Flows.
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Accelerating Particle-Based Variational Inference

Nesterov’s Acceleration Method on Riemannian Manifolds
rk ∈ P2(X ): auxiliary variable. vk := − grad KL(rk).

Riemannian Accelerated Gradient (RAG) [13] (with simplification):{
qk = Exprk−1

(εvk−1),

rk = Expqk

[
−Γ

qk
rk−1

(
k−1
k

Exp−1
rk−1

(qk−1)− k+α−2
k

εvk−1

)]
.

Riemannian Nesterov’s method (RNes) [19] (with simplification):{
qk = Exprk−1

(εvk−1),

rk = Expqk
{
c1 Exp−1

qk

[
Exprk−1

(
(1−c2) Exp−1

rk−1
(qk−1)+c2 Exp−1

rk−1
(qk)

)]}
.

Required:

Exponential map Expq : TqP2(X )→ P2(X ) and its inverse.

Parallel transport Γrq : TqP2(X )→ TrP2(X ).

Ruiyi Zhang (Duke University) On WGFs and ParVIs Workshop on Stein’s Method 30 / 41



Accelerating Particle-Based Variational Inference

Leveraging the Riemannian Structure of P2(X )

Exponential map ([17], Coro. 7.22; [1], Prop. 8.4.6; [5], Prop. 2.1):
Expq(v) = (id +v)#q, i.e., {x(i)}i ∼ q ⇒ {x(i)+v(x(i))}i ∼ Expq(v).

Inverse exponential map: require the optimal transport map.

Sinkhorn methods [3, 18] appear costly and unstable.
Make approximations when {x(i)}i and {y(i)}i are pairwise close:
d(x(i), y(i))� min

{
minj 6=i d(x(i), x(j)),minj 6=i d(y(i), y(j))

}
.

Proposition 10 (Inverse exponential map)

For pairwise close samples {x(i)}i of q and {y(i)}i of r, we have(
Exp−1

q (r)
)
(x(i)) ≈ y(i) − x(i).

Parallel transport

Hard to implement analytical results [14, 15].
Use Schild’s ladder method [4, 8] for approximation.

Proposition 11 (Parallel transport)

For pairwise close samples {x(i)}i of q and {y(i)}i of r, we have
(
Γrq(v)

)
(y(i)) ≈ v(x(i)),

∀v ∈ TqP2.
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Accelerating Particle-Based Variational Inference

Acceleration Framework for ParVIs

Algorithm 1 The acceleration framework with Wasserstein Accelerated Gradient
(WAG) and Wasserstein Nesterov’s method (WNes)

1: WAG: select acceleration factor α > 3;
WNes: select or calculate c1, c2 ∈ R+;

2: Initialize {x(i)0 }Ni=1 distinctly; let y
(i)
0 = x

(i)
0 ;

3: for k = 1, 2, · · · , kmax, do
4: for i = 1, · · · , N , do

5: Find v(y
(i)
k−1) by SVGD/Blob/DGF/GFSD/GFSF;

6: x
(i)
k = y

(i)
k−1 + εv(y

(i)
k−1);

7: y
(i)
k = x

(i)
k +

{
WAG: k−1

k (y
(i)
k−1 − x

(i)
k−1) + k+α−2

k εv(y
(i)
k−1);

WNes: c1(c2 − 1)(x
(i)
k − x

(i)
k−1);

8: end for
9: end for

10: Return {x(i)kmax
}Ni=1.
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Accelerating Particle-Based Variational Inference

Bayesian Logistic Regression (BLR)
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Figure: Acceleration effect of WAG and WNes on BLR on the Covertype dataset,
measured by prediction accuracy on test dataset. Each curve is averaged over 10 runs.
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Accelerating Particle-Based Variational Inference

Latent Dirichlet Allocation (LDA)

200 400
iteration

1020

1040

1060

1080

1100

ho
ld

ou
t p

er
pl

ex
ity

SVGD-WGD
SVGD-PO
SVGD-WAG
SVGD-WNes

200 400
iteration

1020

1040

1060

1080

1100

ho
ld

ou
t p

er
pl

ex
ity

Blob-WGD
Blob-PO
Blob-WAG
Blob-WNes

200 400
iteration

1020

1040

1060

1080

1100

ho
ld

ou
t p

er
pl

ex
ity

GFSD-WGD
GFSD-PO
GFSD-WAG
GFSD-WNes

200 400
iteration

1020

1040

1060

1080

1100
ho

ld
ou

t p
er

pl
ex

ity
GFSF-WGD
GFSF-PO
GFSF-WAG
GFSF-WNes

Figure: Acceleration effect of WAG and WNes on LDA.
Inference results are measured by the hold-out perplexity.
Curves are averaged over 10 runs.
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Figure: Comparison of
SVGD and SGNHT on
LDA, as representatives of
ParVIs and MCMCs.
Average over 10 runs.

Ruiyi Zhang (Duke University) On WGFs and ParVIs Workshop on Stein’s Method 34 / 41



Applications

1 Introduction

2 Background

3 Unifying Particle-Based Variational Inference

4 Understanding Particle-Based Variational Inference

5 Accelerating Particle-Based Variational Inference

6 Applications

Ruiyi Zhang (Duke University) On WGFs and ParVIs Workshop on Stein’s Method 35 / 41



Applications

Application I: Thompson Sampling

Given past observations D = {di}ti=1 , {(xi,ai, ri)}ti=1, model prior p(x),
model (likelihood) p(D|x) =

∏
p(di|x) on i.i.d. assumption.

In Thompson sampling (TS), we want to sample from the posterior:

p(x|D) ∝ p(x)p(D|x) = p(x)

t∏

i=1

p(di|x) .

We employ ParVIs to approximate the intractable posterior:
particle-interactive Thompson sampling [22].

Posterior 
Distribution

Over Models

Greedy
Action

Selection

Observations

model 1

model M

model 2
…

Sample a model
Random selecta model

Update posterior
(usually intractable)

Update particles
efficiently!

Figure: vanilla TS v.s. particle-interactive TS
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Applications

Experiments on Thompson Sampling

Methods:
Linear TS: not scalable and poor expressive power.

Neural Linear: performs linear TS on extracted features.

VI-TS (Gaussian): underestimate uncertainty leads to high variances.

π-TS : particle-based variational inference.

Figure: Normalized Regret comparison on real public datasets.
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Applications

Application II: Reinforcement Learning (Soft-Q Learning)

1 Q-function update [6]:

Q(at, st) = r(at, st) + γEst+1∼ρπ [Vπ(st+1)− αH(π(·|st+1))]

where Vπ(st+1) , log
∫
A exp(Q(a, st+1))da.

π∗(at|st) = arg max
π

∑
t

E(st,at)∼ρπ [r(st,at) + αH(π(·|st))]
2 Policy Optimization:

Approximate the policy π∗(·|s) , ps,π ∝ exp(Q(·, s)) via ParVIs

3 Interact with the environment, collect more data (repeat 1-3).

The policy distribution π is a sampling network: at ∼ πφ(·|st), and the
policy optimization as WGFs (DP-WGF) is:

πφk+1 = arg min
πφ

{
KL
(
πφ‖ps,π

)
+
d2w(πφ, πφk )

2ε

}
.�



�
	DP-WGF can be regarded as policy gradient with

Wasserstein trust-region [21].
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Applications

Experiments on Reinforcement Learning

Figure: Average return in MuJoCo tasks by Soft-Q, SAC and DP-WGF-V (first row), and
by DDPG, TRPO-GAE and DP-WGF-V (second row).

WGF-DP-V SAC TRPO-GAE DDPG
Domain Threshold MaxReturn. Episodes MaxReturn Epsisodes MaxReturn Episodes MaxReturn Episodes

Swimmer 100 181.60 76 180.83 112 110.58 433 49.57 N/A
Walker 3000 4978.59 2289 4255.05 2388 3497.81 3020 2138.42 N/A
Hopper 2000 3248.76 678 3146.51 736 2604 1749 1317 N/A

Humanoid 2000 3077.84 18740 2212.51 26476 5411.15 32261 2230.60 34652

Table: Average return by TRPO-GAE, SAC, DDPG and DP-WGF-V

Ruiyi Zhang (Duke University) On WGFs and ParVIs Workshop on Stein’s Method 39 / 41



Applications

Summary

ParVIs are numerical solutions to Wasserstein gradient flows (Unifying).

ParVIs rely on smoothing: either the density or functions (Understanding).

ParVIs can be accelerated via leveraging the Riemannian Structure.

Variants of ParVIs: GFSF, GFSD [10], DGF [21], Blob [2], etc.

Outperform existing methods on a number of applications.
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Applications

Ruiyi Zhang Changyou Chen Chang Liu Lawrence Carin

Thank you!
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