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Statistical Inference for Unnormalised Models

Motivation: Suppose we observe some data {x1, . . . , xn}.

Given a parametric family of distributions {Pθ : θ ∈ Θ} with densities
denoted pθ, we seek θ∗ ∈ Θ which best approximates the empirical
distribution:

Qn =
1

n

n∑
i=1

δxi

Challenge: For complex models, we often only have access to the
likelihood in unnormalised form:

pθ(x) =
p̃θ(x)

C

where C > 0 is unknown and p̃ can be evaluated pointwise.

Examples include models of natural images, large graphical models,
deep energy models, etc...
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Minimum Discrepancy Estimators

Let D be a function such that D(Q||Pθ) ≥ 0 measures the
discrepancy between the empirical distribution Q and Pθ.

We say that θ̂ ∈ Θ is a minimum discrepancy estimator if:

θ̂n ∈ argminθ∈ΘD(Qn||Pθ)

This includes, but is not limited to:
1 KL-divergence or other Bregman Divergence
2 Wasserstein distance or Sinkhorn Divergence
3 Maximum Mean Discrepancy
4 ...

Question: Which discrepancy should we use for unnormalised models?
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Score Matching Estimators

The score matching estimator [Hyvarinen, 2006] is based on the
Fisher Divergence:

SM(Q||Pθ) :=

∫
X
‖∇ log q(x)−∇ log pθ(x)‖2

2Q(dx)

=

∫
X

(‖∇ log pθ(x)‖2
2 + 2∆ log pθ(x))Q(dx) + Z

where Z ∈ R is independent of θ

This is one of the most competitive methods to date with
applications for inference in natural images, deep energy models and
directional statistics.

Several Failure Modes: This approach requires second-order
derivatives and struggles with heavy-tailed data [Swersky, 2011].
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Minimum Stein Discrepancy Estimators

Let Γ(Y) := {f : X → Y}. A function class G ⊂ Γ(Rd) is a Stein
class, with corresponding Stein operator SPθ

: G ⊂ Γ(Rd)→ Γ(Rd) if:∫
X
SPθ

[f ]dPθ = 0 ∀f ∈ G

This leads to the notion of Stein discrepancy (SD) [Gorham, 2015]:

SDSPθ [G] (Q||Pθ) := sup
f ∈SPθ [G]

∣∣∣∣∫
X
fdPθ −

∫
X
fdQ

∣∣∣∣
= sup

g∈G

∣∣∣∣∫
X
SPθ

[g ]dQ
∣∣∣∣ ,

on which we base our minimum Stein discrepancy estimators:

θ̂n ∈ argminθ∈ΘSDSPθ [G] (Qn||Pθ) .
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Score Matching Estimators are Minimum Stein
Discrepancy Estimators

Consider the Stein operator Smp [g ] := 1
pθ
∇ · (pθg) and the Stein class:

G =
{
g = (g1, . . . , gd) ∈ C 1(X ,Rd) ∩ L2(X ;Q) : ‖g‖L2(X ;Q) ≤ 1

}
.

In this case, the Stein discrepancy is the Score Matching divergence:

SDSPθ [G] (Q||Pθ) = SM(Q||Pθ).

Our paper also shows that several other popular estimators for
unnormalised, including contrastive divergence and minimum
probability flow are minimum SD estimators.
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Minimum Diffusion Kernel Stein Discrepancy Estimators

More general Stein operators were considered in [Gorham, 2016]:

Smp [g ] :=
1

pθ
∇ · (pθmg) , Smpθ [A] :=

1

pθ
∇ · (pθmA) ,

where g ∈ Γ(Rd), A ∈ Γ(Rd×d), and m ∈ Γ(Rd×d).

Taking G to be the unit ball of a vector-valued RKHS HK , we get a
diffusion kernel Stein discrepancy, which generalises the KSD:

DKSDK ,m(Q‖P)2 =

∫
X

∫
X
k0(x , y)dQ(x)dQ(y)

where

k0(x , y) := Sm,2p Sm,1p K (x , y)

=
1

p(y)p(x)
∇y · ∇x ·

(
p(x)m(x)K (x , y)m(y)>p(y)

)
.
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Diffusion Kernel Stein Discrepancy Estimators

We therefore end up with the following estimators:

θ̂DKSD
n ∈ argminθ∈ΘD̂KSDK ,m(Qn‖Pθ)2

where D̂KSDK ,m(Qn‖Pθ)2 = 2
n(n−1)

∑
1≤i<j≤n k0(xi , xj).

Proposition (DKSD as statistical divergence)

Suppose K is IPD and in the Stein class of Q, and m(x) is invertible. If
∇ log p −∇ log q ∈ L1(Q), then DKSDK ,m(Q‖P)2 = 0 iff Q = P.

Proposition (IPD matrix kernels)

(i) Let K = diag(k1, . . . , kd). Then K is IPD iff each kernel k i is IPD. (ii)
Let K = Bk for B be symmetric positive definite. Then K is IPD iff k is
IPD.
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Consistency & Asymptotic Normality

Theorem (Consistency and Asymptotic Normality of DKSD)

Under smoothness and integrability conditions on K, m and θ → Pθ and
their derivatives, we have that θDKSD

n converges to θ∗ a.s. Furthermore,

√
n
(
θ̂DKSD
n − θ∗

)
→ N

(
0, g−1

DKSD(θ∗)Σg−1
DKSD(θ∗)

)
where Σ =

∫
X
(∫
X ∇θ∗k0(x , y)dQ(y)

)
⊗
(∫
X ∇θ∗k0(x , z)dQ(z)

)
dQ(x)

and:

gDKSD(θ)ij =

∫
X

∫
X

(∇x∂θj log pθ)>mθ(x)K (x , y)m>θ (y)∇y∂θi log pθ

dPθ(x)dPθ(y).

Important Remark: The choice of kernel K and diffusion matrix m
will have a significant impact on the performance of these estimators!
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Robustness of DKSD

The influence function describes infinitesimal corruption of the data and is
given by IF(z ,Q) := ∂tθQt |t=0 if it exists, where Qt = (1− t)Q + tδz , for
t ∈ [0, 1]. An estimator is said to be bias robust if IF(z ,Q) is bounded in z .

Proposition (Robustness of DKSD estimators)

The influence function of DKSD is given by:

IF(z ,Pθ) = gDKSD(θ)−1

∫
X
∇θk0(z , y)dPθ(y).

In particular, there are various conditions on m and K which can
guarantee that supz∈X ‖IF(z ,Pθ)‖ <∞.

Important Remark: Once again, carefully choosing K and m can lead
to good robustness properties.
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Implementation of Minimum DKSD Estimators

In order to implement our DKSD estimators

θ̂DKSD
n ∈ argminθ∈ΘD̂KSDK ,m(Qn‖Pθ)2,

we propose to make use of stochastic optimisation. In particular, we can
make use of the geometry induced by DKSD to obtain an efficient
algorithm akin to stochastic natural gradient descent [Amari, 1998]:

θ̂t+1 = θ̂t − γt ĝ−1
DKSD(θt)∇θt D̂KSD(Qn‖Pθ).

which approximates the gradient flow

θ̇(t) = −g−1
DKSD(θ(t))∇θDKSD(Q‖Pθ(t)),

using U-statistics estimates of the metric tensor and gradient.
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Application 1: Models with Rough Densities

Model: pθ(x) ∝ (‖x − θ1‖2/θ2)(s−d/2)Ks−d/2(‖x − θ1‖2/θ2)

Parameters: (θ∗1, θ
∗
2) = (0, 1) and s varies.

Number of samples: n = 100.
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Application 2: Models with Heavy-Tails

Model: pθ(x) ∝ (1/θ2)(1 + (1/ν)(‖x − θ1‖2/θ2)2)−(ν+1)/2.

Diffusion Matrix: mθ(x) = 1 = ‖x − θ1‖2/θ2
2.

Parameters: ν = 5, (θ∗1, θ
∗
2) = (25, 10).

Number of Samples: Left: n = 100, Right: n = 1000.
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Summary & Conclusions

In this talk, we have:

Introduced a class of minimum Stein discrepancy estimators, and
focused on a particular subclass called minimum DKSD.
Shown that this class includes many popular estimators for
unnormalised models including score-matching, contrastive divergence
and minimum probability flow.
Discussed consistency, a CLT, and robustness of minimum DKSD
estimators, and discussed the importance of the kernel and operator.
Demonstrated the advantage of the estimators for rough densities or
heavy-tailed distributions.

Take home message: The flexibility offered by the choice of Stein class and
operator allows us to tailor the estimators to the model of interest.
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