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Statistical Inference for Unnormalised Models

@ Motivation: Suppose we observe some data {xi,...,xp}.

Given a parametric family of distributions {Py : 6 € ©} with densities
denoted py, we seek 0* € © which best approximates the empirical

distribution:
1 n
n—=_Z Ox
@ n ; ’
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Statistical Inference for Unnormalised Models

@ Motivation: Suppose we observe some data {xi,...,xp}.

Given a parametric family of distributions {Py : 6 € ©} with densities
denoted py, we seek 0* € © which best approximates the empirical

distribution:
1 n
n—=_Z Ox
Q n ; ‘

@ Challenge: For complex models, we often only have access to the
likelihood in unnormalised form:

where C > 0 is unknown and p can be evaluated pointwise.
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Statistical Inference for Unnormalised Models

@ Motivation: Suppose we observe some data {xi,...,xp}.

Given a parametric family of distributions {Py : 6 € ©} with densities
denoted py, we seek 0* € © which best approximates the empirical

distribution:
1 n
n—=_Z Ox
Q n ; ‘

@ Challenge: For complex models, we often only have access to the
likelihood in unnormalised form:

where C > 0 is unknown and p can be evaluated pointwise.

@ Examples include models of natural images, large graphical models,
deep energy models, etc...
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Minimum Discrepancy Estimators
@ Let D be a function such that D(Q||Py) > 0 measures the
discrepancy between the empirical distribution Q and Py.

o We say that 0 € © is a minimum discrepancy estimator if:

~

0n € argmingcg D(Q"||Pp)
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Minimum Discrepancy Estimators

o Let D be a function such that D(Q||Pg) > 0 measures the
discrepancy between the empirical distribution Q and Py.

o We say that 0 € © is a minimum discrepancy estimator if:

~

0n € argmingcg D(Q"||Pp)

@ This includes, but is not limited to:

@ KL-divergence or other Bregman Divergence
@ Wasserstein distance or Sinkhorn Divergence
© Maximum Mean Discrepancy

Q ..
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Minimum Discrepancy Estimators

o Let D be a function such that D(Q||Pg) > 0 measures the
discrepancy between the empirical distribution Q and Py.

o We say that 0 € © is a minimum discrepancy estimator if:

~

0n € argmingcg D(Q"||Pp)

@ This includes, but is not limited to:

@ KL-divergence or other Bregman Divergence
@ Wasserstein distance or Sinkhorn Divergence
© Maximum Mean Discrepancy

Q ..

@ Question: Which discrepancy should we use for unnormalised models?
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Score Matching Estimators

@ The score matching estimator [Hyvarinen, 2006] is based on the
Fisher Divergence:

SM(QI[Bs) = /X 1V 10g g(x) — V log po(x)|3Q(dx)
- /X (7 log po(x)3 + 25 log py(x))Q(d) + Z

where Z € R is independent of 6
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Score Matching Estimators

@ The score matching estimator [Hyvarinen, 2006] is based on the
Fisher Divergence:

M(QI[Bs) = / 1V log a(x) — ¥ log ps (x)|3Q(dx)

= [ (1908 pu()13 + 2810 )2 + 2

where Z € R is independent of 6

@ This is one of the most competitive methods to date with
applications for inference in natural images, deep energy models and
directional statistics.
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Score Matching Estimators

@ The score matching estimator [Hyvarinen, 2006] is based on the
Fisher Divergence:

M(QI[Bs) = / 1V log a(x) — ¥ log ps (x)|3Q(dx)

= [ (1908 pu()13 + 2810 )2 + 2

where Z € R is independent of 6

@ This is one of the most competitive methods to date with
applications for inference in natural images, deep energy models and
directional statistics.

@ Several Failure Modes: This approach requires second-order
derivatives and struggles with heavy-tailed data [Swersky, 2011].
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Minimum Stein Discrepancy Estimators

o Let I(Y) :={f: X — Y}. A function class G C I(R9) is a Stein
class, with corresponding Stein operator Sp, : G C T(R?) — ['(RY) if:

/ S, [f]dFPs =0 VfegG
X
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Minimum Stein Discrepancy Estimators

o Let I(Y):= {f: X — Y}. A function class G C [(R?) is a Stein
class, with corresponding Stein operator Sp, : G C T(R?) — ['(RY) if:

/ S, [f]dFPs =0 VfegG
X

o This leads to the notion of Stein discrepancy (SD) [Gorham, 2015]:

SDs,, 101 (Ql[Pg) = sup ‘/ fd]Pg— fdQ‘
FESr, 0]

= sup

/ SIP’H [g]d(@‘
on which we base our minimum Stein discrepancy estimators:
0, € argmin(;e@SDSPe[g] (Q"||Py) .
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Score Matching Estimators are Minimum Stein
Discrepancy Estimators

o Consider the Stein operator S["[g] := pleV - (ppg) and the Stein class:

G = {g =(g1,.--,84) € CH (X, RN N L2(X; Q) : |Iglli2(xi0) < 1}-
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Score Matching Estimators are Minimum Stein
Discrepancy Estimators

o Consider the Stein operator S["[g] := pleV - (ppg) and the Stein class:

G = {g =(g1,.--,84) € CH (X, RN N L2(X; Q) : |Iglli2(xi0) < 1}-
In this case, the Stein discrepancy is the Score Matching divergence:

SDs;, 1] (QIIPg) = SM(Q[[Pp).
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Score Matching Estimators are Minimum Stein
Discrepancy Estimators

o Consider the Stein operator S['[g] := p%V - (pog) and the Stein class:

g= {g = (g1,.-,84) € CH (X, R) N L2(X;Q) : [|gl i2(x;0) < 1}-
In this case, the Stein discrepancy is the Score Matching divergence:

SDs;, 1] (QIIPg) = SM(Q[[Pp).

@ Our paper also shows that several other popular estimators for
unnormalised, including contrastive divergence and minimum
probability flow are minimum SD estimators.
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Minimum Diffusion Kernel Stein Discrepancy Estimators
@ More general Stein operators were considered in [Gorham, 2016]:
1 1
STgl:i= —V - (pgmg), ST[Al:=—V:(pgmA),
pleli= 2V (pomg), SplAl:= V- (pimA)

where g € T(RY), A € T(R¥*9), and m € [(RI¥9),

@ Taking G to be the unit ball of a vector-valued RKHS Hg, we get a
diffusion kernel Stein discrepancy, which generalises the KSD:

DKSDk.m(Q|[P)? = /X /X ko(x, y)dQ(x)dQ(y)

where
ko(.y) = SPASPIK(x.y)
1
~ p)p(x) Vy Vs <” (x)m(x)K (X»Y)m(y)TP(y)> :
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Diffusion Kernel Stein Discrepancy Estimators

We therefore end up with the following estimators:
APKSP ¢ argming. o DKSDk m(Q"|[Py)?

where DKSD k. m(Q"||P)? = ﬁ Z1§i<jgn ko(xi, xj)-
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Diffusion Kernel Stein Discrepancy Estimators
We therefore end up with the following estimators:

HA,'?KSD € argmingeelﬁS\E)K7m(Q"||P9)2
where DKSD m(Q"|P9)? = 235 Sr<icjcn ko(Xi ).
Proposition (DKSD as statistical divergence)

Suppose K is IPD and in the Stein class of Q, and m(x) is invertible. If
Viogp — Vlogq € LY(Q), then DKSDk m(Q|IP)? = 0 iff Q = P.
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Diffusion Kernel Stein Discrepancy Estimators
We therefore end up with the following estimators:

GRS € argmingoDKSDk m(Q"|[Py)?
where DKSD m(Q"|P9)? = 235 Sr<icjcn ko(Xi ).
Proposition (DKSD as statistical divergence)

Suppose K is IPD and in the Stein class of Q, and m(x) is invertible. If
Viogp — Vlogq € LY(Q), then DKSDk m(Q|IP)? = 0 iff Q = P.

Proposition (IPD matrix kernels)

(i) Let K = diag(k®, ..., k?). Then K is IPD iff each kernel k' is IPD. (ii)
Let K = Bk for B be symmetric positive definite. Then K is IPD iff k is
IPD.

v
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Consistency & Asymptotic Normality

Theorem (Consistency and Asymptotic Normality of DKSD)

Under smoothness and integrability conditions on K, m and 0 — Py and
their derivatives, we have that HEKSD converges to 0* a.s. Furthermore,

vn (éEKSD 9*> — N (0, gprsp(0")Z8pksp(6))

where T = [, ([ Vo-ko(x,Y)AQy)) @ ([ Vorko(x, 2)dQ(2)) dQ(x)

and:

goksp(0)j = /X/X(anej|0gP0)Tme(X)K(X,Y)m(;r(Y)Vyaaf|0gP9

dPy(x)dPy(y).
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Consistency & Asymptotic Normality

Theorem (Consistency and Asymptotic Normality of DKSD)

Under smoothness and integrability conditions on K, m and 0 — Py and
their derivatives, we have that HEKSD converges to 0* a.s. Furthermore,

vn (éEKSD 9*> — N (0, gprsp(0")Z8pksp(6))

where T = [, ([ Vo-ko(x,Y)AQy)) @ ([ Vorko(x, 2)dQ(2)) dQ(x)

and:

goksp(0)j = /X/X(anej|0gP0)Tme(X)K(X,Y)m(;r(Y)Vyaaf|0gp9

dPy(x)dPy(y).

@ Important Remark: The choice of kernel K and diffusion matrix m
will have a significant impact on the performance of these estimators!
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Robustness of DKSD

The influence function describes infinitesimal corruption of the data and is
given by IF(z,Q) := 0:0q, |t=o if it exists, where Q; = (1 — t)Q + tJ,, for
t € [0,1]. An estimator is said to be bias robust if IF(z, Q) is bounded in z.
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Robustness of DKSD

The influence function describes infinitesimal corruption of the data and is
given by IF(z,Q) := 0:0q, |t=o if it exists, where Q; = (1 — t)Q + tJ,, for
t € [0,1]. An estimator is said to be bias robust if IF(z, Q) is bounded in z.

Proposition (Robustness of DKSD estimators)
The influence function of DKSD is given by:

IF(z,Py) = gDKSD(Q)_l/Xveko(zy}/)dpe()/)'

In particular, there are various conditions on m and K which can
guarantee that sup,cy ||IF(z,Py)|| < oc.
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Robustness of DKSD

The influence function describes infinitesimal corruption of the data and is
given by IF(z,Q) := 0:0q, |t=o if it exists, where Q; = (1 — t)Q + tJ,, for
t € [0,1]. An estimator is said to be bias robust if IF(z, Q) is bounded in z.

Proposition (Robustness of DKSD estimators)
The influence function of DKSD is given by:

IF(z,Py) = gDKSD(e)_l/XVQI(O(Z,}/)dPQ(y)-

In particular, there are various conditions on m and K which can
guarantee that sup,cy ||IF(z,Py)|| < oc.

@ Important Remark: Once again, carefully choosing K and m can lead
to good robustness properties.
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Implementation of Minimum DKSD Estimators

In order to implement our DKSD estimators
OKSD ¢ argmingcgDKSDk m(Q"|P5)?,
we propose to make use of stochastic optimisation. In particular, we can

make use of the geometry induced by DKSD to obtain an efficient
algorithm akin to stochastic natural gradient descent [Amari, 1998]:

ét+1 = ét - ’Ytgﬁéso(gt)vb’tDKSD(QHHPO)'
which approximates the gradient flow
6(t) = —gpksp(0(t)) VaDKSD(Q|Py(y)).

using U-statistics estimates of the metric tensor and gradient.
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Application 1: Models with Rough Densities
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o Model: py(x) o< (||Ix — 01]|2/62) =D Ks_yo(||x — 01]2/02)

o Parameters: (67, 605) = (0,1) and s varies.

@ Number of samples: n = 100.
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-
Application 2: Models with Heavy-Tails
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© Model: py(x) o (1/62)(1 + (1/v)(llx — b1l2/62)%) =172,
o Diffusion Matrix: mg(x) = 1 = ||x — 61]|?/63.

o Parameters: v =5, (67, 05) = (25, 10).

@ Number of Samples: Left: n = 100, Right: n = 1000.
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Summary & Conclusions

In this talk, we have:

@ Introduced a class of minimum Stein discrepancy estimators, and
focused on a particular subclass called minimum DKSD.

@ Shown that this class includes many popular estimators for
unnormalised models including score-matching, contrastive divergence
and minimum probability flow.

@ Discussed consistency, a CLT, and robustness of minimum DKSD
estimators, and discussed the importance of the kernel and operator.

@ Demonstrated the advantage of the estimators for rough densities or
heavy-tailed distributions.
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Summary & Conclusions

In this talk, we have:

@ Introduced a class of minimum Stein discrepancy estimators, and
focused on a particular subclass called minimum DKSD.

@ Shown that this class includes many popular estimators for
unnormalised models including score-matching, contrastive divergence
and minimum probability flow.

@ Discussed consistency, a CLT, and robustness of minimum DKSD
estimators, and discussed the importance of the kernel and operator.

@ Demonstrated the advantage of the estimators for rough densities or
heavy-tailed distributions.

Take home message: The flexibility offered by the choice of Stein class and
operator allows us to tailor the estimators to the model of interest.
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Summary & Conclusions

In this talk, we have:

@ Introduced a class of minimum Stein discrepancy estimators, and
focused on a particular subclass called minimum DKSD.

@ Shown that this class includes many popular estimators for
unnormalised models including score-matching, contrastive divergence
and minimum probability flow.

@ Discussed consistency, a CLT, and robustness of minimum DKSD
estimators, and discussed the importance of the kernel and operator.

@ Demonstrated the advantage of the estimators for rough densities or
heavy-tailed distributions.

Take home message: The flexibility offered by the choice of Stein class and
operator allows us to tailor the estimators to the model of interest.

Barp, A., Briol, F-X., Duncan, A., Girolami, M., Mackey, L. (2019)
Minimum Stein Discrepancy Estimators. (preprint:

https://fxbriol.github.io)
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