Relative Goodness-of-Fit Tests for Models with Latent Variables

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

June 15, 2019

Data = robbery events in Chicago in 2016.

Is this a good model?

Goals: Test if a (complicated) model fits the data.

"All models are wrong."

G. Box (1976)

Relative model comparison

- Have: two candidate models P and Q, and samples {x_i}ⁿ_{i=1} from reference distribution R
- **Goal:** which of P and Q is better?

 $\bigcirc O G J I | I |$ 222233 3333<u>3</u>74.0 5555666677 77748938 9999999

000001 111022 222022331 <u>344455560</u> 6666777 9999**9**

Samples from GAN, Goodfellow et al. (2014) Samples from LSGAN, Mao et al. (2017)

Which model is better?

Most interesting models have latent structure

Graphical model representation of hierarchical LDA with a nested CRP prior, Blei et al. (2003)

Relative goodness-of-fit tests for Models with Latent Variables

- The kernel Stein discrepancy
 - Comparing two models via samples: MMD and the witness function.
 - Comparing a sample and a model: Stein modification of the witness class
- Constructing a relative hypothesis test using the KSD
- Relative hypothesis tests with latent variables (new, unpublished)

Model P, data {x_i}ⁿ_{i=1} ~ Q.
"All models are wrong" (P ≠ Q).

Integral probability metrics

Integral probability metric:

Find a "well behaved function" f(x) to maximize

 $\mathrm{E}_{Q}f(Y) - \mathrm{E}_{P}f(X)$

Integral probability metrics

Integral probability metric:

Find a "well behaved function" f(x) to maximize

 $\mathrm{E}_{Q}f(Y) - \mathrm{E}_{P}f(X)$

All of kernel methods

Functions are linear combinations of features:

$$f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}} = \sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{bmatrix}^{\mathsf{T}} \xrightarrow{\varphi_1(x)} \xrightarrow{\varphi_2(x)} \xrightarrow{\varphi_3(x)} \xrightarrow{\varphi_3($$

-

All of kernel methods

"The kernel trick"

All of kernel methods

"The kernel trick"

Function of infinitely many features expressed using m coefficients.

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$\mathrm{MMD}(P, Q; \mathcal{F}) := \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathrm{\mathbf{E}}_{P} f(\boldsymbol{X}) - \mathrm{\mathbf{E}}_{Q} f(\boldsymbol{Y}) \right]$$

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$ext{MMD}(P, Q; \mathcal{F}) := \sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathbf{E}_P f(\boldsymbol{X}) - \mathbf{E}_Q f(\boldsymbol{Y})]$$

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$\mathrm{MMD}(P, Q; \mathcal{F}) := \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathrm{\mathbf{E}}_{P} f(X) - \mathrm{\mathbf{E}}_{Q} f(Y) \right]$$

For characteristic RKHS \mathcal{F} , MMD $(P, Q; \mathcal{F}) = 0$ iff P = Q

Other choices for witness function class:

- Bounded continuous [Dudley, 2002]
- Bounded variation 1 (Kolmogorov metric) [Müller, 1997]
- 1-Lipschitz (Wasserstein distances) [Dudley, 2002]

Statistical model criticism: toy example

Can we compute MMD with samples from Q and a model P? **Problem:** usualy can't compute $\mathbf{E}_p f$ in closed form.

Stein idea

To get rid of \mathbf{E}_{pf} in

$$\sup_{\|f\||_{\mathcal{F}} \leq 1} [\mathbf{E}_{q}f - \mathbf{E}_{p}f]$$

we define the (1-D) Stein operator

$$\left[\mathcal{A}_{p}f\right](x) = \frac{1}{p(x)} \frac{d}{dx} \left(f(x)p(x)\right)$$

Then

$$\mathbf{E}_{p}\mathcal{A}_{p}f=0$$

subject to appropriate boundary conditions.

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)

Stein operator

$$\mathcal{A}_p f = rac{1}{p(x)} \, rac{d}{dx} \left(f(x) p(x)
ight)$$

$$\mathrm{KSD}_p(Q) = \sup_{\|g\|_F \leq 1} \mathbf{E}_q \mathcal{A}_p g - \mathbf{E}_p \mathcal{A}_p g$$

Stein operator

$$\mathcal{A}_p f = rac{1}{p(x)} \, rac{d}{dx} \left(f(x) p(x)
ight)$$

$$\mathrm{KSD}_p(Q) = \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathrm{E}_q \mathcal{A}_p g - \underbrace{\mathrm{E}_p}_{\mathcal{F}} \mathcal{A}_p g = \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathrm{E}_q \mathcal{A}_p g$$

Stein operator

$$\mathcal{A}_p f = rac{1}{p(x)} \, rac{d}{dx} \left(f(x) p(x)
ight)$$

$$\mathrm{KSD}_p(Q) = \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathbf{E}_q \mathcal{A}_p g - \mathbf{E}_p \mathcal{A}_p g = \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathbf{E}_q \mathcal{A}_p g$$

Stein operator

$$\mathcal{A}_p f = rac{1}{p(x)} \, rac{d}{dx} \left(f(x) p(x)
ight)$$

$$\mathrm{KSD}_p(Q) = \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathbf{E}_q \mathcal{A}_p g - \mathbf{E}_p \mathcal{A}_p g = \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathbf{E}_q \mathcal{A}_p g$$

Simple expression using kernels

Re-write stein operator as:

$$egin{aligned} \left[\mathcal{A}_{p}f
ight](x) &= rac{1}{p(x)}\,rac{d}{dx}\left(f(x)p(x)
ight)\ &= f(x)rac{d}{dx}\log p(x) + rac{d}{dx}f(x) \end{aligned}$$

Can we define "Stein features"?

$$egin{aligned} \left[\mathcal{A}_pf
ight](m{x}) &= \left(rac{d}{dx}\logm{p}(m{x})
ight)f(m{x}) + rac{d}{dx}f(m{x}) \ &=: \left\langle f, \underbrace{m{\xi}(m{x})}_{ ext{stein features}}
ight
angle_{\mathcal{F}} \end{aligned}$$

where $\mathbf{E}_{\boldsymbol{x}\sim p}\boldsymbol{\xi}(\boldsymbol{x})=0.$

Simple expression using kernels

Re-write stein operator as:

$$egin{aligned} \left[\mathcal{A}_{p}f
ight](x) &= rac{1}{p(x)}\,rac{d}{dx}\left(f(x)p(x)
ight)\ &= f(x)rac{d}{dx}\log p(x) + rac{d}{dx}f(x) \end{aligned}$$

Can we define "Stein features"?

$$egin{aligned} \left[\mathcal{A}_p f
ight](x) &= \left(rac{d}{dx}\log p(x)
ight)f(x) + rac{d}{dx}f(x) \ &=: \left\langle f, \underbrace{\xi(x)}_{ ext{stein features}}
ight
angle_{\mathcal{F}} \end{aligned}$$

where $\mathbf{E}_{\boldsymbol{x}\sim \boldsymbol{p}}\boldsymbol{\xi}(\boldsymbol{x})=0.$

The kernel trick for derivatives

Reproducing property for the derivative: for differentiable k(x, x'),

$$rac{d}{dx}f(x)=\left\langle f,rac{d}{dx}arphi(x)
ight
angle _{\mathcal{F}}$$

The kernel trick for derivatives

Reproducing property for the derivative: for differentiable k(x, x'),

$$rac{d}{dx}f(x)=\left\langle f,rac{d}{dx}arphi(x)
ight
angle _{\mathcal{F}}$$

Using kernel derivative trick in (a),

$$\begin{split} \left[\mathcal{A}_{p}f\right](\boldsymbol{x}) &= \left(\frac{d}{dx}\log p(\boldsymbol{x})\right)f(\boldsymbol{x}) + \frac{d}{dx}f(\boldsymbol{x}) \\ &= \left\langle f, \left(\frac{d}{dx}\log p(\boldsymbol{x})\right)\varphi(\boldsymbol{x}) + \underbrace{\frac{d}{dx}\varphi(\boldsymbol{x})}_{(\boldsymbol{a})}\right\rangle_{\mathcal{F}} \\ &=: \left\langle f, \boldsymbol{\xi}(\boldsymbol{x})\right\rangle_{\mathcal{F}}. \end{split}$$

Kernel stein discrepancy: derivation

Closed-form expression for KSD: given <u>independent</u> $x, x' \sim Q$, then
$$\begin{split} \text{KSD}_p(Q) &= \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathbf{E}_{x \sim q} \left([\mathcal{A}_p g] \left(x \right) \right) \\ &= \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathbf{E}_{x \sim q} \left\langle g, \xi_x \right\rangle_{\mathcal{F}} \\ &= \sup_{(a) \|g\|_{\mathcal{F}} \leq 1} \left\langle g, \mathbf{E}_{x \sim q} \xi_x \right\rangle_{\mathcal{F}} = \|\mathbf{E}_{x \sim q} \xi_x\|_{\mathcal{F}} \end{split}$$

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

Kernel stein discrepancy: derivation

Closed-form expression for KSD: given independent $x, x' \sim Q$, then

$$\begin{split} \operatorname{KSD}_p(Q) &= \sup_{\|g\|_{\mathcal{F}} \leq 1} \operatorname{E}_{x \sim q} \left([\mathcal{A}_p g] \left(x \right) \right) \\ &= \sup_{\|g\|_{\mathcal{F}} \leq 1} \operatorname{E}_{x \sim q} \left\langle g, \xi_x \right\rangle_{\mathcal{F}} \\ &= \sup_{(a)} \sup_{\|g\|_{\mathcal{F}} \leq 1} \left\langle g, \operatorname{E}_{x \sim q} \xi_x \right\rangle_{\mathcal{F}} = \|\operatorname{E}_{x \sim q} \xi_x\|_{\mathcal{F}} \end{split}$$

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

Kernel stein discrepancy: derivation

Closed-form expression for KSD: given independent $x, x' \sim Q$, then

$$\begin{split} \operatorname{KSD}_p(Q) &= \sup_{\|g\|_{\mathcal{F}} \leq 1} \operatorname{E}_{x \sim q} \left([\mathcal{A}_p g] \left(x \right) \right) \\ &= \sup_{\|g\|_{\mathcal{F}} \leq 1} \operatorname{E}_{x \sim q} \left\langle g, \xi_x \right\rangle_{\mathcal{F}} \\ &= \sup_{\|g\|_{\mathcal{F}} \leq 1} \left\langle g, \operatorname{E}_{x \sim q} \xi_x \right\rangle_{\mathcal{F}} = \|\operatorname{E}_{x \sim q} \xi_x\|_{\mathcal{F}} \end{split}$$

Caution: (a) requires a condition for the Riesz theorem to hold,

$$\mathbf{E}_{x \sim q} \left(\frac{d}{dx} \log p(x) \right)^2 < \infty.$$

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

The witness function: Chicago Crime

Model p = 10-component Gaussian mixture.

The witness function: Chicago Crime

Witness function g shows mismatch

Does the Riesz condition matter?

Consider the standard normal,

$$p(x) = rac{1}{\sqrt{2\pi}} \exp\left(-x^2/2
ight).$$

Then

$$rac{d}{dx}\log p(x)=-x.$$

If q is a Cauchy distribution, then the integral

$$\mathbf{E}_{x\sim q}\left(rac{d}{dx}\log p(x)
ight)^2 = \int_{-\infty}^\infty x^2 q(x) dx$$

is undefined.

Does the Riesz condition matter?

Consider the standard normal,

$$p(x) = rac{1}{\sqrt{2\pi}} \exp\left(-x^2/2
ight).$$

Then

$$rac{d}{dx}\log rac{p}{(x)}=-x.$$

If q is a Cauchy distribution, then the integral

$$\mathbf{E}_{x \sim q} \left(rac{d}{dx} \log p(x)
ight)^2 = \int_{-\infty}^\infty x^2 q(x) dx$$

is undefined.
Test statistic:

$$\mathrm{KSD}_p^2(Q) = \|\mathbf{E}_{x \sim q} \boldsymbol{\xi}_x\|_{\mathcal{F}}^2 = \mathbf{E}_{x,x' \sim Q} h_p(x,x')$$

where

$$egin{aligned} h_{p}(x,x') &= \mathrm{s}_{p}(x)^{ op}\mathrm{s}_{p}(x')k(x,x') + \mathrm{s}_{p}(x)^{ op}k_{2}(x,x') \ &+ \mathrm{s}_{p}(x')^{ op}k_{1}(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

Test statistic:

$$\mathrm{KSD}_p^2(Q) = \|\mathbf{E}_{x \sim q} \boldsymbol{\xi}_x\|_{\mathcal{F}}^2 = \mathbf{E}_{x,x' \sim Q} h_p(x,x')$$

where

$$egin{aligned} h_{p}(x,x') &= \mathrm{s}_{p}(x)^{ op}\mathrm{s}_{p}(x')k(x,x') + \mathrm{s}_{p}(x)^{ op}k_{2}(x,x') \ &+ \mathrm{s}_{p}(x')^{ op}k_{1}(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

$$\begin{array}{l} \mathbf{s}_{p}(x) \in \mathbb{R}^{D} = \frac{\nabla p(x)}{p(x)} \\ \mathbf{s}_{1}(a,b) := \nabla_{x}k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{D}, \\ k_{2}(a,b) := \nabla_{x'}k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{D}, \\ \mathbf{s}_{12}(a,b) := \nabla_{x}\nabla_{x'}k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{D \times D} \end{array}$$

Test statistic:

$$\mathrm{KSD}_p^2(Q) = \|\mathbf{E}_{x \sim q} \boldsymbol{\xi}_x\|_\mathcal{F}^2 = \mathbf{E}_{x,x' \sim Q} h_p(x,x')$$

where

$$egin{aligned} h_{m{p}}(x,x') &= \mathbf{s}_{m{p}}(x)^{ op}\mathbf{s}_{m{p}}(x')k(x,x') + \mathbf{s}_{m{p}}(x)^{ op}k_2(x,x') \ &+ \mathbf{s}_{m{p}}(x')^{ op}k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

$$\begin{array}{l} \bullet \ \mathbf{s}_{p}(x) \in \mathbb{R}^{D} = \frac{\nabla p(x)}{p(x)} \\ \bullet \ k_{1}(a,b) := \nabla_{x}k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{D}, \\ k_{2}(a,b) := \nabla_{x'}k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{D}, \\ \bullet \ k_{12}(a,b) := \nabla_{x}\nabla_{x'}k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{D \times D}. \end{array}$$

Do not need to normalize p, or sample from it.

Test statistic:

$$\mathrm{KSD}_p^2(Q) = \|\mathbf{E}_{x \sim q} \boldsymbol{\xi}_x\|_{\mathcal{F}}^2 = \mathbf{E}_{x,x' \sim Q} h_p(x,x')$$

where

$$egin{aligned} h_{p}(x,x') &= \mathbf{s}_{p}(x)^{ op}\mathbf{s}_{p}(x')k(x,x') + \mathbf{s}_{p}(x)^{ op}k_{2}(x,x') \ &+ \mathbf{s}_{p}(x')^{ op}k_{1}(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

$$\begin{array}{l} \bullet \ \mathbf{s}_{p}(x) \in \mathbb{R}^{D} = \frac{\nabla p(x)}{p(x)} \\ \bullet \ k_{1}(a,b) := \nabla_{x}k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{D}, \\ k_{2}(a,b) := \nabla_{x'}k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{D}, \\ \bullet \ k_{12}(a,b) := \nabla_{x}\nabla_{x'}k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{D \times D}. \end{array}$$

If kernel is C_0 -universal and Q satisfies $\mathbf{E}_{x \sim Q} \left\| \nabla \left(\log \frac{p(x)}{q(x)} \right) \right\|^2 < \infty$, then $\mathrm{KSD}_p^2(Q) = 0$ iff P = Q.

KSD for discrete-valued variables

Discrete domains: $\mathcal{X} = \{1, ..., L\}^D$ with $L \in \mathbb{N}$. The population KSD (discrete):

$$\mathrm{KSD}_p^2(Q) = \mathrm{E}_{x,x'\sim Q} h_p(x,x')$$

where

$$egin{aligned} h_p(x,x') &= \mathrm{s}_p(x)^ op \mathrm{s}_p(x')k(x,x') - \mathrm{s}_p(x)^ op k_2(x,x') \ &- \mathrm{s}_p(x')^ op k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \ &k_1(x,x') &= \Delta_x^{-1}k(x,x'), \, \Delta_x^{-1} ext{ is difference on } x, \, \mathrm{s}_p(x) &= rac{\Delta p(x)}{p(x)} \end{aligned}$$

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)

KSD for discrete-valued variables

Discrete domains: $\mathcal{X} = \{1, ..., L\}^D$ with $L \in \mathbb{N}$. The population KSD (discrete):

$$\mathrm{KSD}_p^2(Q) = \mathrm{E}_{x,x'\sim Q} h_p(x,x')$$

where

$$egin{aligned} h_p(x,x') &= \mathbf{s}_p(x)^ op \mathbf{s}_p(x')k(x,x') - \mathbf{s}_p(x)^ op k_2(x,x') \ &- \mathbf{s}_p(x')^ op k_1(x,x') + ext{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

 $k_1(x,x') = \Delta_x^{-1}k(x,x'), \ \Delta_x^{-1}$ is difference on $x, \ \mathbf{s}_p(x) = rac{\Delta p(x)}{p(x)}$

A discrete kernel: $k(x,x') = \exp\left(-d_H(x,x')\right)$, where $d_H(x,x') = D^{-1} \sum_{d=1}^D \mathbb{I}(x_d \neq x_d')$.

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)

KSD for discrete-valued variables

Discrete domains: $\mathcal{X} = \{1, ..., L\}^D$ with $L \in \mathbb{N}$. The population KSD (discrete):

$$\mathrm{KSD}_p^2(Q) = \mathrm{E}_{x,x'\sim Q} h_p(x,x')$$

where

$$egin{aligned} h_p(x,x') &= \mathbf{s}_p(x)^ op \mathbf{s}_p(x')k(x,x') - \mathbf{s}_p(x)^ op k_2(x,x') \ &- \mathbf{s}_p(x')^ op k_1(x,x') + ext{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

 $k_1(x,x') = \Delta_x^{-1}k(x,x'), \ \Delta_x^{-1}$ is difference on $x, \ \mathrm{s}_p(x) = rac{\Delta p(x)}{p(x)}$

A discrete kernel: $k(x,x') = \exp\left(-d_H(x,x')\right)$, where $d_H(x,x') = D^{-1} \sum_{d=1}^D \mathbb{I}(x_d \neq x_d')$.

 $\mathrm{KSD}_p^2(Q) = 0$ iff P = Q if

Gram matrix over all the configurations in X is strictly positive definite,
 P > 0 and Q > 0.

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)

Empirical statistic, asymptotic normality for $P \neq Q$

The empirical statistic:

$$\widehat{\mathrm{KSD}_p^2}(\mathcal{Q}) \coloneqq rac{1}{n(n-1)}\sum_{i
eq j}h_p(\pmb{x}_i,\pmb{x}_j).$$

Empirical statistic, asymptotic normality for $P \neq Q$

The empirical statistic:

$$\widehat{\mathrm{KSD}}_p^2(Q) \coloneqq rac{1}{n(n-1)} \sum_{i
eq j} h_p(x_i, x_j).$$

Asymptotic distribution when $P \neq Q$:

$$\sqrt{n}\left(\widehat{\mathrm{KSD}_p^2}(\mathcal{Q})-\mathrm{KSD}_p^2(\mathcal{Q})
ight) \stackrel{d}{ o} \mathcal{N}(0,\sigma_{h_p}^2) \qquad \sigma_{h_p}^2 = 4\mathrm{Var}[\mathbb{E}_{x'}[h_p(x,x')]].$$

Relative goodness-of-fit testing

Two generative models P and Q, data {x_i}ⁿ_{i=1} ~ R.
Neither model gives a perfect fit (P ≠ R and Q ≠ R).

Joint asymptotic normality

Joint asymptotic normality when $P \neq R$ and $Q \neq R$

$$\sqrt{n} \left[\underbrace{\operatorname{KSD}_{p}^{2}(R) - \operatorname{KSD}_{p}^{2}(R)}_{\operatorname{KSD}_{q}^{2}(R) - \operatorname{KSD}_{q}^{2}(R)} \right] \stackrel{d}{\to} \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{h_{p}}^{2} & \sigma_{h_{p}h_{q}} \\ \sigma_{h_{p}h_{q}} & \sigma_{h_{q}}^{2} \end{bmatrix} \right)$$

$$\widehat{\operatorname{KSD}_{q}^{2}}(R)$$

$$\operatorname{KSD}_{q}^{2}(R) \xrightarrow{\operatorname{KSD}_{p}^{2}(R)} \xrightarrow{\operatorname{KSD}_{p}^{2}(R)}$$

Joint asymptotic normality

Joint asymptotic normality when $P \neq R$ and $Q \neq R$

$$\sqrt{n} \left[\begin{array}{c} \widehat{\mathrm{KSD}}_p^2(R) - \mathrm{KSD}_p^2(R) \\ \widehat{\mathrm{KSD}}_q^2(R) - \mathrm{KSD}_q^2(R) \end{array} \right] \stackrel{d}{\to} \mathcal{N} \left(\left[\begin{array}{c} 0 \\ 0 \end{array} \right], \left[\begin{array}{c} \sigma_{h_p}^2 & \sigma_{h_p h_q} \\ \sigma_{h_p h_q} & \sigma_{h_q}^2 \end{array} \right] \right)$$

Difference in statistics is asymptotically normal:

$$egin{aligned} &\sqrt{n}\left[\widehat{ ext{KSD}_p^2}(R) - \widehat{ ext{KSD}_q^2}(R) - \left(ext{KSD}_p^2(R) - ext{KSD}_q^2(R)
ight)
ight] \ & ext{ } rac{d}{
ightarrow} \mathcal{N}\left(0, \sigma_{h_p}^2 + \sigma_{h_q}^2 - 2\sigma_{h_ph_q}
ight) \end{aligned}$$

 \implies a statistical test with null hypothesis $\text{KSD}_p^2(R) - \text{KSD}_q^2(R) \le 0$ is straightforward.

Latent variable models

Can we compare latent variable models with KSD?

$$egin{aligned} p(x) &= \int p(x|z) p(z) dz \ q(y) &= \int q(y|w) p(w) dw \end{aligned}$$

Recall multi-dimensional Stein operator:

$$\left[\mathcal{A}_pf\right](x) = \left\langle \underbrace{rac{
abla p(x)}{p(x)}}_{(a)}, f(x) \right\rangle + \left\langle
abla, f(x) \right\rangle.$$

Expression (a) requires marginal p(x), often intractable...

Latent variable models

Can we compare latent variable models with KSD?

$$egin{aligned} p(x) &= \int p(x|z) p(z) dz \ q(y) &= \int q(y|w) p(w) dw \end{aligned}$$

Recall multi-dimensional Stein operator:

$$\left[\mathcal{A}_pf\right](x) = \left\langle \underbrace{rac{
abla p(x)}{p(x)}}_{(a)}, f(x) \right\rangle + \left\langle
abla, f(x) \right\rangle.$$

Expression (a) requires marginal p(x), often intractable... ...but sampling can be straightforward!

Monte Carlo approximation

Approximate the integral using $\{z_j\}_{j=1}^m \sim p(z)$:

$$egin{aligned} p(x) &= \int p(x|z)p(z)dz \ &pprox p_m(x) &= rac{1}{m}\sum_{j=1}^m p(x|z_j) \end{aligned}$$

Estimate KSDs with approxiomate densities:

$$\widehat{\mathrm{KSD}_p^2}(R) - \widehat{\mathrm{KSD}_q^2}(R) pprox \widehat{\mathrm{KSD}_{p_m}^2}(R) - \widehat{\mathrm{KSD}_{q_m}^2}(R)$$

Monte Carlo approximation

Approximate the integral using $\{z_j\}_{j=1}^m \sim p(z)$:

$$egin{aligned} p(x) &= \int p(x|z)p(z)dz \ &pprox p_m(x) &= rac{1}{m}\sum_{j=1}^m p(x|z_j) \end{aligned}$$

Estimate KSDs with approxiomate densities:

$$\widehat{\mathrm{KSD}_p^2}(R) - \widehat{\mathrm{KSD}_q^2}(R) pprox \widehat{\mathrm{KSD}_{p_m}^2}(R) - \widehat{\mathrm{KSD}_{q_m}^2}(R)$$

Recall

$$egin{aligned} &\sqrt{n}\left[\widehat{ ext{KSD}_p^2}(R) - \widehat{ ext{KSD}_q^2}(R) - \left(ext{KSD}_p^2(R) - ext{KSD}_q^2(R)
ight)
ight] \ & ext{d} \ & ext$$

 \rightarrow if *m* is large, can we simply substitute p_m and q_m ?

Simple proof of concept

Check $\widetilde{\mathrm{KSD}_p^2}(R) \approx \widetilde{\mathrm{KSD}_{p_m}^2}(R)$ with a toy model:

• Model: Beta-Binomial BetaBinom (α, β)

$$p(x|z) = {N \choose x} z^x (1-z)^{n-x}, \ p(z) = \operatorname{Beta}(a, b)$$

- Latent $z \in (0, 1)$: success probability for binomial likelihood
- Marginal p(x): tractable (given by the beta function)

Generate $\sqrt{nKSD_p^2}(R)$ and $\sqrt{nKSD_{p_m}^2}(R)$ \rightarrow what do their distribution look like?

Effect of sampling the latents (Beta-binomial)

Effect of sampling the latents (Beta-binomial)

Effect of sampling the latents (Beta-binomial)

 $\operatorname{KSD}_{p_m}^2(R)$ is normally distributed around $\operatorname{KSD}_p^2(R)$ (approximation error)

Approximation p_m gives a random draw $\text{KSD}_{p_m}^2(R)$

 $\operatorname{KSD}_{p_m}^2(R)$ is normally distributed around $\operatorname{KSD}_{p_m}^2(R)$

Distribution of $\widehat{\mathrm{KSD}}_{p_m}^2(R)$ is averaged over random draws of $\mathrm{KSD}_{p_m}^2(R)$

Distribution of $\widehat{\mathrm{KSD}}_{p_m}^2(R)$ is averaged over random draws of $\mathrm{KSD}_{p_m}^2(R)$

 $\widehat{\mathrm{KSD}}_{p_m}^2(R)$ has a higher variance than $\widehat{\mathrm{KSD}}_p^2(R)$

Correction for this effect

- BetaBinomial models with p vs $q = p_m$: numerical vs closed-form marginalisation.
- With correction for increased $\overline{\text{KSD}}_{p_m}^2(R)$ variance, null accepted w.p. 1α .

Correction for this effect

- BetaBinomial models with p vs $q = p_m$: numerical vs closed-form marginalisation.
- With correction for increased $KSD_{p_m}^2(R)$ variance, null accepted w.p. $1 - \alpha$.

- Naive Rel-KSD test has incorrect type-I error
- Naive KSD: $q = p_m \neq p$ \Rightarrow rejection rate \rightarrow 1 as

31/37

Asymptotics for approximate KSD

We have asymptotic normality for $\text{KSD}_{p_m}^2(R)$,

$$\sqrt{m}(\mathrm{KSD}^2_{p_m}(R)-\mathrm{KSD}^2_p(R))\stackrel{d}{
ightarrow}\mathcal{N}(0,\gamma_p^2)$$

The fine print:

- $\quad \inf_x \frac{p(x) > 0}{\sup_x \left| \frac{dp(x)}{dx} \right| < \infty }$
- (Uniform CLT) Likelihoods $\{p(x|\cdot)|x \in \mathcal{X}\}$ and derivatives $\{\frac{d}{dx}p(x|\cdot)|x \in \mathcal{X}\}$ are p(z) Donsker class

Asymptotic distribution for relative KSD test

Asymptotic distribution of approximate KSD estimate $(n, m) \to \infty, \ \frac{n}{m} \to r \in [0, \infty):$ $\sqrt{n} \left[\left(\widehat{\mathrm{KSD}_{p_m}^2}(R) - \widehat{\mathrm{KSD}_{q_m}^2}(R) \right) - \left(\mathrm{KSD}_p^2(R) - \mathrm{KSD}_q^2(R) \right) \right] \xrightarrow{d} \mathcal{N}(0, c^2)$

where

$$c = \sigma_{pq} \sqrt{1 + r(\gamma_{pq}/\sigma_{pq})^2}$$

$$\gamma_{pq}^2 = \lim_{m \to \infty} m \cdot \operatorname{Var} \left[\mathbf{E}_{x,x'} h_{p_m}(x, x') - \mathbf{E}_{x,x'} h_{q_m}(x, x') \right]$$

$$\sigma_{pq}^2 = \lim_{n \to \infty} n \cdot \operatorname{Var} \left[\widehat{\mathrm{KSD}}_p^2(R) - \widehat{\mathrm{KSD}}_q^2(R) \right]$$

Fine print:

- $h_p(x, x') h_q(x, x')$ has a finite third moment
- An additional technical condition (next slide)

Main theorem

Theorem (Asymptotic distribution of random kernel U-statistic) Let

- $U_{n,m}$: a U-statistic defined by a random U-statistic kernel H_m
- U_n : a U-statistic defined by a fixed U-statistic kernel h
- Assume that

• $\sigma_{H_m}^2 \to \sigma_h^2$ in probability • $\nu_3(H_m) \to \nu_3(h) < \infty$ in probability where $\nu_3(H_m) = \mathbb{E}_{x,x'} |H_m(x,x') - \mathbb{E}_{x,x'}H_m(x,x')|^3$ • $Y_m := \sqrt{m} \Big(\mathbb{E}_n[U_{n,m}|H_m] - \mathbb{E}_n[U_n] \Big) \xrightarrow{d} Y$ Then, with $n/m \to r \in [0, \infty)$,

$$\lim_{n,m o \infty} \Pr\left[\sqrt{n} (\, U_{n,m} - \mathbb{E}_n \, U_n \,) < t
ight] = \mathbb{E}_{\,Y} \left[\Phi\left(rac{t - \sqrt{r} \, Y}{\sigma_h}
ight)
ight]$$

Main theorem

Theorem (Asymptotic distribution of random kernel U-statistic) Let

- $U_{n,m}$: a U-statistic defined by a random U-statistic kernel H_m
- U_n : a U-statistic defined by a fixed U-statistic kernel h

Assume that

• $\sigma_{H_m}^2 \to \sigma_h^2$ in probability • $\nu_3(H_m) \to \nu_3(h) < \infty$ in probability where $\nu_3(H_m) = \mathbb{E}_{x,x'} |H_m(x,x') - \mathbb{E}_{x,x'}H_m(x,x')|^3$ • $Y_m \coloneqq \sqrt{m} \left(\mathbb{E}_n[U_{n,m}|H_m] - \mathbb{E}_n[U_n] \right) \stackrel{d}{\to} Y$ • Then, with $n/m \to r \in [0, \infty)$,

$$\lim_{n,m \to \infty} \Pr\left[\sqrt{n}(U_{n,m} - \mathbb{E}_n \, U_n) < t\right] = \mathbb{E}_Y\left[\Phi\left(\frac{t - \sqrt{r} \, Y}{\sigma_h}\right)\right]$$

Main theorem

Theorem (Asymptotic distribution of random kernel U-statistic) Let

- $U_{n,m}$: a U-statistic defined by a random U-statistic kernel H_m
- U_n : a U-statistic defined by a fixed U-statistic kernel h

Assume that

7

$$\begin{array}{l} \bullet \quad \sigma_{H_m}^2 \to \sigma_h^2 \ in \ probability \\ \bullet \quad \nu_3(H_m) \to \nu_3(h) < \infty \ in \ probability \\ where \ \nu_3(H_m) = \mathbb{E}_{x,x'} \left| H_m(x,x') - \mathbb{E}_{x,x'} H_m(x,x') \right|^3 \\ \bullet \quad Y_m := \sqrt{m} \Big(\mathbb{E}_n[U_{n,m}|H_m] - \mathbb{E}_n[U_n] \Big) \stackrel{d}{\to} Y \\ Then, \ with \ n/m \to r \in [0,\infty), \end{array}$$

$$\lim_{n,m o \infty} \Pr\left[\sqrt{n} (\, U_{n,m} - \mathbb{E}_n \, U_n) < t
ight] = \mathbb{E}_{\,Y} \left[\Phi\left(rac{t - \sqrt{r} \, Y}{\sigma_h}
ight)
ight]$$

Experiment: sensitivity to model difference

Data R = Sigmoid Belief Network SBN(W):

 $R(x|z) = ext{sigmoid}(Wz), \ R(z) = \mathcal{N}(0, I), \ W \in \mathbb{R}^{30 imes 10}$

Models: P = SBN(W + ε[1, 0, ..., 0]), Q = SBN(W + [1, 0, ..., 0])
Only the first column of weight W is perturbed by ε

Experiment: sensitivity to model difference

Data R = Sigmoid Belief Network SBN(W):

 $R(x|z) = ext{sigmoid}(Wz), \ R(z) = \mathcal{N}(0, I), \ W \in \mathbb{R}^{30 imes 10}$

Models: P = SBN(W + \epsilon[1,0,...,0]), Q = SBN(W + [1,0,...,0])
Only the first column of weight W is perturbed by \epsilon

Experiment: sensitivity to model difference

Data R = Sigmoid Belief Network SBN(W):

 $R(x|z) = ext{sigmoid}(Wz), \ R(z) = \mathcal{N}(0, I), \ W \in \mathbb{R}^{30 imes 10}$

Models: P = SBN(W + \epsilon[1,0,...,0]), Q = SBN(W + [1,0,...,0])
Only the first column of weight W is perturbed by \epsilon

KSD has higher power $(\epsilon > 1)$

- Sample-wise difference in models = subtle (MMD fails)
- Model's information is better utilised

---- MMD ---- LKSD (KSD for Latent Models) m=100 ---- LKSD m=1000

